ADS-B over Satellite

Coherent detection of weak Mode-S signals from Low Earth Orbit

4S Symposium, June 1st 2016 in Valletta, Malta

<u>Toni Delovski, German Aerospace Center (DLR) – Institute of Space Systems</u> Jochen Bredemeyer, FCS Flight Calibration Services

Overview

Project "ADS-B over Satellite"

Objectives: Proof of Concept: Feasibility of satellite-based ADS-B Surveillance In-Orbit Demonstration on ESA-Satellite PROBA-V **Project Duration:** 1st Q. 2011 until End of 2nd Q. 2014 DLR R&D funding 3rd Q. 2015 until End of 4th Q. 2016 ESA GSTP funding Institute of Space Systems (RY), Bremen, Germany Cooperation: Institute for Flight Guidance (FL), Braunschweig, Germany Flight Calibration Services (FCS), Braunschweig, Germany

Project "ADS-B over Satellite"

Contributions:

Institute of Space Systems (DLR)

- FCS Flight Calibration Services (FCS)
- Hamburg University of Applied Sciences (HAW) Development of ADS-B Antenna
- Institute of Flight Guidance (DLR)
- SES TechCom / ESA:
- Air Services Australia, ISAVIA Icelandic Civil Aviation Administration, NAV Portugal:

Lead, Development and Assembly of a space-qualified ADS-B Receiver and Antenna, Data evaluation

Development of ADS-B receiver

Verification Concept and **Evaluation of ADS-B Data** Provision of Data Server

Provision of Data

Overview

Air Traffic surveillance today....

... and the Consequences for Non Radar Airspace

- Future Air Traffic Management has to deal with worldwide increasing air traffic without surveillance capacities
- Ample Separation Distances in NRA
- non-efficient Use of Airspace, leading to higher fuel consumption and higher carbon emissions
- Expensive and time-consuming SAR Measures in case of emergency

The next generation Air Traffic Management must transform procedural to controlled airspace!

GANDER OCEANIC (16)

Background: ADS-B

Satellite based Reception of 1090ES ADS-B

DLR Satellite vs. Flightradar24

Overview

Mode S Properties

GNSS Mode S (and its subset ADS-B ES) was never designed for detection of weak telegrams below -90dBm Mode S signal structure has poor correlation properties since it was introduced as a compatible replacement for Mode A/C but not for recovering ADS-B signals from noise ADS-B ADS-B **PSR Goal for this ESA project:** Increase the number of valid A/C positions just by upgrade of FPGA ADS-B configuration and Receiver processor firmware

Image: © Eurocontrol

Mode S Signal Processing

- Two approaches: Partially (non) (1) and fully coherent (2) telegram detection can be implemented in FPGA
- (1) was active from launch till 2016 and used the amplitude and phase of 9 consecutive single pulses: 4 preamble and 5 format bits
- Method allows to detect telegrams down to -104dBm (this level with poor probability of detection)
- Method (2) takes a full mutual phase coherence of these 9 pulses for granted to work
- This is true for all modern airliner transponders since the transmitted pulses are amplified from a stable TCXO local clock source

Mode S Signal Processing

Autocorrelation function of fully-coherent method

Correlation of Mode S DF17

- Band pass signal (IF samples) show beginning of "strong" telegram at -95dBm
- Signal strength is limited at ADC, 16Bit full scale is reached

Autocorrelation function of fully-coherent method Correlation of Mode S DF17

- Beginning of weak Telegram (-106dBm)
- Mode S preamble hardly visible but ACF shows distinct maximum

Overview

Comparison of process gain

Single Pulse Correlator: Probability of Detection

Generation of "Low-confidence Bits"

- Bit demodulation employs weighting function to determine energy in half chips
- If difference in energy is low, then confidence in data bit is low

Distribution of Signal Levels for one satellite pass

Receiver calibration over frequency and level

- This distribution from PROBA-V shows the ACF of non-coherent correlator
- Maximum at -99dBm Broader "shoulder" expected with new method (2)

Distribution of Signal Levels for one satellite pass

- This distribution from PROBA-V shows the ACF of non-coherent and coherent correlator
- Maximum at -103dBm Loss of ~75-80% Data due to Lack of Memory

Summary and Conclusions

- Fully coherent correlation method has a minimum of 3.5dB gain over partially-coherent technique
- Detection down to -109dBm possible
- Significantly increased Number of valid detected telegrams
- Using the low confidence bits, there is an additional chance to recover some defective telegrams; this to be tested with real data
- Disadvantage: significant increase in power consumption of 50% since many more registers are switching at 105MHz

Thank you for your Attention!

Toni Delovski

German Aerospace Center Institute of Space Systems

Robert-Hooke-Str. 7 D-28359 Bremen

Mail: toni.delovski@dlr.de

Dr. Jochen Bredemeyer

Flight Calibration Services

Hermann-Blenk-Str. 32A D-38108 Braunschweig

Mail: brd@flightcalibration.de

